

PROGRAMMING IN C

UNIT-4

Structure:

Structure in c is a user-defined data type that enables us to store the collection of different data

types. Each element of a structure is called a member. Structures ca; simulate the use of classes

and templates as it can store various information

The, struct keyword is used to define the structure.

Syntax:

struct structure_name

{

data_type member1;

data_type member2;

….....

….....

data_type memeberN;

};

Example:

struct employee

{ int id;

char name[20];

float salary;

};

Declaring structure variable:
We can declare a variable for the structure so that we can access the member of the structure

easily. There are two ways to declare structure variable:

1. By struct keyword within main() function

Let's see the example to declare the structure variable by struct keyword. It should be declared

within the main function.

struct employee

{ int id;

 char name[50];

 float salary;

};

Now write given code inside the main() function.

struct employee e1, e2;

The variables e1 and e2 can be used to access the values stored in the structure. Here, e1 and e2

can be treated in the same way as the objects in C++ and Java.

2. By declaring a variable at the time of defining the structure.

Let's see another way to declare variable at the time of defining the structure.

struct employee

{ int id;

 char name[50];

 float salary;

}e1,e2;

Accessing members of the structure:
There are two ways to access structure members:

1. Member or dot operator(.):

The dot (.) operator is used for direct member selection via object name. In other words, it is
used to access the child object.

2. structure pointer operator(->):

To access the members of the structure referenced using the pointer we use the operator “->”.
This operator is called as arrow operator. Using this we can access all the members of the
structure and we can further do all operations on them.

Structure Initialization:

Generally, the initialization of the structure variable is done after the structure declaration. Just
after structure declaration put the braces (i.e. {}) and inside it an equal sign (=) followed by the
values must be in the order of members specified also each value must be separated by com-
mas. The example below will show how to initialize structure variable in C programming.

Example:

Program : To demonstrate initialization of structure in C.

#include<stdio.h>

#include<conio.h>

void main(void)

{

struct language

{

char name;

int year;

};

struct language

dr={'C', 1972};

printf("%c%d\n", dr.name, dr. year);

getch();

OUTPUT:

C1972

Operations performed on structure variable:
The only operation that is allowed on structure variables is the assignment operation. Two

variables of the same structure can be copied similar to ordinary variables.

If P1 and P2 are variables of struct P, then P1 values can be assigned to P2 as

P2=P1;

where values of P1 will be assigned to P2 member by member.

Operation on Individual Members of Structures
All operations are valid on individual members of structures.

Example:

#include<stdio.h>

#include<string.h>

struct student

{

int rno;

char name[10];

int marks,age;

};

void main()

{

int m;

//assigning values to structure variable s1 using initalization

struct student s1={2,"Gandhi",89,18};

struct student s2;

s2=s1;

printf("\nDetails of student 1:\n");

printf("\n roll number: %d",s1.rno);

printf("\n name :%s",s1.name);

printf("\n marks: %d",s1.marks);

printf("\n age: %d",s1.age);

printf("\n\n");

printf("Details of student 2:\n");

printf("\n roll number: %d",s2.rno);

printf("\n name :%s",s2.name);

printf("\n marks: %d",s2.marks);

printf("\n age: %d",s2.age);

//comparsion of two student details.

m=((s1.rno==s2.rno)&&(s1.marks==s2.marks))?1:0;

if(m==1)

printf("\n both the details are same");

else

printf("\n both the details are not same");

}

 Output:

Array of Structures:
An array of structures in C can be defined as the collection of multiple structures variables where

each variable contains information about different entities. The array of structures in C are used

to store information about multiple entities of different data types. The array of structures is also

known as the collection of structures.

Let's see an example of an array of structures that stores information of 5 students and prints it.

#include<stdio.h>

#include <string.h>

struct student{

int rollno;

https://www.javatpoint.com/c-programming-language-tutorial

char name[10];

};

int main(){

int i;

struct student st[5];

printf("Enter Records of 5 students");

for(i=0;i<5;i++){

printf("\nEnter Rollno:");

scanf("%d",&st[i].rollno);

printf("\nEnter Name:");

scanf("%s",&st[i].name);

}

printf("\nStudent Information List:");

for(i=0;i<5;i++){

printf("\nRollno:%d, Name:%s",st[i].rollno,st[i].name);

}

 return 0;

}

Output:

Enter Records of 5 students

Enter Rollno:1

Enter Name:Sonoo

Enter Rollno:2

Enter Name:Ratan

Enter Rollno:3

Enter Name:Vimal

Enter Rollno:4

Enter Name:James

Enter Rollno:5

Enter Name:Sarfraz

Student Information List:

Rollno:1, Name:Sonoo

Rollno:2, Name:Ratan

Rollno:3, Name:Vimal

Rollno:4, Name:James

Rollno:5, Name:Sarfraz

Union:
Union can be defined as a user-defined data type which is a collection of different variables of

different data types in the same memory location. The union can also be defined as many

members, but only one member can contain a value at a particular point in time.

Union is a user-defined data type, but unlike structures, they share the same memory location.

The size of the union is based on the size of the largest member of the union.

Let's understand this through an example.

struct abc

{

 int a;

 char b;

}

When we define the union, then we found that union is defined in the same way as the structure

is defined but the difference is that union keyword is used for defining the union data type,

whereas the struct keyword is used for defining the structure. The union contains the data

members, i.e., 'a' and 'b', when we check the addresses of both the variables then we found that

both have the same addresses. It means that the union members share the same memory

location.

Accessing members of union using pointers
We can access the members of the union through pointers by using the (->) arrow operator.

Let's understand through an example.

#include <stdio.h>

union abc

{

 int a;

 char b;

};

int main()

{

 union abc *ptr; // pointer variable declaration

 union abc var;

 var.a= 90;

 ptr = &var;

 printf("The value of a is : %d", ptr->a);

 return 0;

}

File Handling:
In programming, we may require some specific input data to be generated several numbers of

times. Sometimes, it is not enough to only display the data on the console. The data to be

displayed may be very large, and only a limited amount of data can be displayed on the console,

and since the memory is volatile, it is impossible to recover the programmatically generated data

again and again. However, if we need to do so, we may store it onto the local file system which

is volatile and can be accessed every time. Here, comes the need of file handling in C.

File handling in C enables us to create, update, read, and delete the files stored on the local file

system through our C program. The following operations can be performed on a file.

➢ Creation of the new file
➢ Opening an existing file
➢ Reading from the file
➢ Writing to the file
➢ Deleting the file

Functions for file handling:
There are many functions in the C library to open, read, write, search and close the file. A list of

file functions are given below:

No. Function Description

1 fopen() opens new or existing file

2 fprintf() write data into the file

3 fscanf() reads data from the file

4 fputc() writes a character into the file

5 fgetc() reads a character from file

6 fclose() closes the file

7 fseek() sets the file pointer to given position

8 fputw() writes an integer to file

9 fgetw() reads an integer from file

10 ftell() returns current position

11 rewind() sets the file pointer to the beginning of the file

Opening File: fopen():
We must open a file before it can be read, write, or update. The fopen() function is used to open

a file.

Syntax:

FILE *fopen(const char * filename, const char * mode);

The fopen() function accepts two parameters:

1. The file name (string). If the file is stored at some specific location, then we must mention the

path at which the file is stored. For example, a file name can be like

"c://some_folder/some_file.ext".

2. The mode in which the file is to be opened. It is a string.

The fopen function works in the following way.

1. Firstly, it searches the file to be opened.

2. Then, it loads the file from the disk and place it into the buffer. The buffer is used to provide

efficiency for the read operations.

3. It sets up a character pointer which points to the first character of the file.

Closing File: fclose()
The fclose() function is used to close a file. The file must be closed after performing all the

operations on it.

Syntax:

int fclose(FILE *fp);

Need of File Handling:

There are times when the output generated out of a program after its compilation and running
do not serve our intended purpose. In such cases, we might want to check the program’s output
various times. Now, compiling and running the very same program multiple times becomes a
tedious task for any programmer. It is exactly where file handling becomes useful.

Let us look at a few reasons why file handling makes programming easier for all:

Reusability: File handling allows us to preserve the information/data generated after we run the

program.

Saves Time: Some programs might require a large amount of input from their users. In such cases,

file handling allows you to easily access a part of a code using individual commands.

Commendable storage capacity: When storing data in files, you can leave behind the worry of

storing all the info in bulk in any program.

Portability: The contents available in any file can be transferred to another one without any data

loss in the computer system. This saves a lot of effort and minimises the risk of flawed coding.

Input/Output Operations on Files:

1. fprintf() function:
The fprintf() function is used to write set of characters into file. It sends formatted output to a

stream.

Syntax:

int fprintf(FILE *stream, const char *format [, argument, ...])

Example:

#include <stdio.h>

main(){

 FILE *fp;

 fp = fopen("file.txt", "w");//opening file

 fprintf(fp, "Hello file by fprintf...\n");//writing data into file

 fclose(fp);//closing file

}

2. fscanf() function:
The fscanf() function is used to read set of characters from file. It reads a word from the file and

returns EOF at the end of file.

Syntax:

int fscanf(FILE *stream, const char *format [, argument, ...])

Example:

#include <stdio.h>

main(){

 FILE *fp;

 char buff[255];//creating char array to store data of file

 fp = fopen("file.txt", "r");

 while(fscanf(fp, "%s", buff)!=EOF){

 printf("%s ", buff);

 }

 fclose(fp);

}

Output:

Hello file by fprintf...

3. fputc() function
The fputc() function is used to write a single character into file. It outputs a character to a stream.

Syntax:

int fputc(int c, FILE *stream)

Example:

#include <stdio.h>

main(){

 FILE *fp;

 fp = fopen("file1.txt", "w");//opening file

 fputc('a',fp);//writing single character into file

 fclose(fp);//closing file

}

4. fgetc() function:
The fgetc() function returns a single character from the file. It gets a character from the stream.

It returns EOF at the end of file.

Syntax:

int fgetc(FILE *stream)

Example:

#include<stdio.h>

#include<conio.h>

void main(){

FILE *fp;

char c;

clrscr();

fp=fopen("myfile.txt","r");

while((c=fgetc(fp))!=EOF){

printf("%c",c);

}

fclose(fp);

getch();

}

	Declaring structure variable:
	Accessing members of the structure:
	Operations performed on structure variable:
	Operation on Individual Members of Structures
	#include<stdio.h> #include<string.h> struct student { int rno; char name[10]; int marks,age; }; void main() { int m; //assigning values to structure variable s1 using initalization struct student s1={2,"Gandhi",89,18}; struct student s2; s2=s1; printf...

	Array of Structures:
	Union:
	Accessing members of union using pointers

	File Handling:
	Functions for file handling:
	Opening File: fopen():
	Closing File: fclose()
	1. fprintf() function:
	2. fscanf() function:
	3. fputc() function
	4. fgetc() function:

